Stochastic Airy semigroup through tridiagonal matrices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random doubly stochastic tridiagonal matrices

Let Tn be the compact convex set of tridiagonal doubly stochastic matrices. These arise naturally in probability problems as birth and death chains with a uniform stationary distribution. We study ‘typical’ matrices T ∈ Tn chosen uniformly at random in the set Tn. A simple algorithm is presented to allow direct sampling from the uniform distribution on Tn. Using this algorithm, the elements abo...

متن کامل

Exponentials of Symmetric Matrices through Tridiagonal Reductions

A simple and efficient numerical algorithm for computing the exponential of a symmetric matrix is developed in this paper. For an n× n matrix, the required number of operations is around 10/3 n. It is based on the orthogonal reduction to a tridiagonal form and the Chebyshev uniform approximation of e−x on [0,∞).

متن کامل

Inverse Tridiagonal Z – Matrices

In this paper, we consider matrices whose inverses are tridiagonal Z–matrices. Based on a characterization of symmetric tridiagonal matrices by Gantmacher and Krein, we show that a matrix is the inverse of a tridiagonal Z–matrix if and only if, up to a positive scaling of the rows, it is the Hadamard product of a so called weak type D matrix and a flipped weak type D matrix whose parameters sat...

متن کامل

Checking nonsingularity of tridiagonal matrices

I. Bar-On, B. Codenotti, and M. Leoncini presented a linear time algorithm for checking the nonsingularity of general tridiagonal matrices [BIT, 36:206, 1996]. A detailed implementation of their algorithm, with some extensions to possibly reducible matrices, is further described in the present paper.

متن کامل

Splitting of Expanded Tridiagonal Matrices

The article addresses a regular splitting of tridiagonal matrices. The given tridiagonal matrix A is rst expanded to an equivalent matrix e A and then split as e A = B R for which B is block-diagonal and every eigenvalue of B R is zero, i.e., (M N) = 0. The optimal splitting technique is applicable to various algorithms that incorporate one-dimensional solves or their approximations. Examples c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 2018

ISSN: 0091-1798

DOI: 10.1214/17-aop1229